Digital I/O Unit with Opto-Isolation for USB

DIO-3232LX-USB

* Specifications, color and design of the products are subject to change without notice.

Features

32 channels of Optocoupler isolated inputs (compatible with current sink output) and 32 channels of Optocoupler isolated open-collector outputs (current sink type)

This product has the 32 channels of Optocoupler isolated inputs (compatible with current sink output) and the 32 channels of Optocoupler isolated open-collector outputs (current sink type) whose response speed is 200µsec. Supporting driver voltages of 12 - 24 VDC for I/O. (12 - 24VDC external circuit power supply is required separately.)

Compatible to USB1.1/USB2.0

Compatible to USB1.1/USB2.0 and capable to achieve high speed transfer at HighSpeed (480 Mbps).

USB HUB function

This product has the USB hub function. Max. 4 DIO-3232LX-USB can be used in 1 USB port of PC. When you use 4 or more DIO-3232LX-USB, you can do by connecting DIO-3232LX-USB to the another USB port of PC side. *1

Also, you can connect the CONTEC's USB device other than DIO-3232LX-USB to the USB port of DIO-3232LX-USB. *2*3

Common terminal provided per 16 channels

Common terminal provided per 16 channels, capable of supporting a different external power supply.

Optocoupler bus isolation

As the USB (PC) is isolated from the input and output interfaces by Optocouplers, this product has excellent noise performance.

This product is an USB2.0-compliant digital I/O unit used to provide a digital signal I/O function on a PC. This product can input and output digital signals at 12 - 24VDC. This product features 32 channels of Optocoupler isolated inputs (compatible with current sink output) and 32 channels of Optocoupler isolated open-collector outputs (current sink type). You can use 32 input signals as interrupt inputs. Equipped with the digital filter function to prevent wrong recognition of input signals and output transistor protection circuit (surge voltage protection and over current protection).

As there is compatible with PCI bus-compatible board PIO-32/32L(PCI)H and PCI Express bus-compatible board DIO-3232L-PE in terms of connector shape and pin assignments, it is easy to migrate from the existing system. Windows driver is bundled with this product. Possible to be used as a data recording device for LabVIEW, with dedicated libraries.

You can use 32 input signals as interrupt request signals. You can use 32 input signals as interrupt request signals and also disable or enable the interrupt in bit units and select the edge of the input signals, at which to generate an interrupt.

This product has a digital filter to prevent wrong recognition of input signals from carrying noise or a chattering. This product has a digital filter to prevent wrong recognition of input signals from carrying noise or a chattering. All input terminals can be added a digital filter, and the setting can be performed by software.

Output circuits include zener diodes for surge voltage protection and poly-switches for overcurrent protection. Zener diodes are connected to the output circuits to protect against surge voltages. Similarly, polyswitches are fitted to each group of 8channels outputs for over-current protection. The output rating is max. 35VDC, 100mA per channel.

Connectors are compatible with PCI/PCI Express bus-compatible board

As there is compatible with PIO-32/32L(PCI)H and DIO-3232L-PE in terms of connector shape and pin assignments, it is easy to migrate from the existing system. If the system of this product is created by the digital I/O driver API-DIO(98/PC), it is required to replace it with API-DIO(WDM).

Windows compatible driver libraries are attached.

Using the attached digital I/O driver API-DIO(WDM) makes it possible to create applications of Windows. In addition, a diagnostic program by which the operations of hardware can be checked is provided.

LabVIEW is supported by a plug-in of dedicated library VI-DAQ.

Using the dedicated library VI-DAQ makes it possible to make a LabVIEW application.

*1 When you use the USB port included on the DIO-3232LX-USB, use 5VDC power supply for self-power. For more details on the connection with 5VDC power supply, refer to page 5, “Connection with 5VDC Power Supply for Self-power”.

*2 Do not connect the device other than that of CONTEC’s USB to the USB port included on the DIO-3232LX-USB. Otherwise, this may cause a failure or malfunction.

*3 When connecting multiple units with USB HUB function and set up them, do one at a time and complete setup for the previous unit before starting to do the next unit.
VI-DAQ is created with a function form similar to that of this is a VI library to use in National Instruments LabVIEW. for downloading (free of charge) from the CONTEC web site.)

For more details on the supported OS, applicable language and how to download the updated version, please visit the CONTEC’s Web site (http://www.contec.com/apiusbp/).

Data acquisition VI library for LabVIEW VI-DAQ (Available for downloading (free of charge) from the CONTEC web site.)

This is a VI library to use in National Instruments LabVIEW. VI-DAQ is created with a function form similar to that of LabVIEW’s Data Acquisition VI, allowing you to use various devices without complicated settings. See http://www.contec.com/vidaq/ for details and download of VI-DAQ.

Cable & Connector

Shield Cable with 96-Pin Half-Pitch Connectors at Both Ends
- PC96PS-0.5P (0.5m)
- PC96PS-1.5P (1.5m)
- PC96PS-3P (3m)
- PC96PS-5P (5m)

Flat Cable with 96-Pin Half-Pitch Connectors at Both Ends
- PC96P-1.5 (1.5m)
- PC96P-3 (3m)
- PC96P-5 (5m)

Shield Cable with 96-Pin Half-Pitch Connectors at One End
- PCA96PS-0.5P (0.5m)
- PCA96PS-1.5P (1.5m)
- PCA96PS-3P (3m)
- PCA96PS-5P (5m)

Flat Cable with 96-Pin Half-Pitch Connectors at One End
- PCA96P-1.5 (1.5m)
- PCA96P-3 (3m)
- PCA96P-5 (5m)

Distribution shield cable with 96-Pin Half-Pitch Connectors (96P→37P x 2)
- PC96WS-1.5P (1.5m)
- PC96WS-3P (3m)
- PC96WS-5P (5m)

Connector (Option)
Half Pitch 96P Female Connector Set(5 Pieces)
- CN5-H96F

Accessories
Screw Terminal Unit (M3 x 96P)
- EPD-96A *1
- EPD-96 *1

Terminal Unit for Cables (M2.5 x 96P)
- DTP-64(PC) *1

Signal Monitor / Output Accessory for Digital I/O (64P)
- CM-64(PC)E *1

Screw Terminal Unit (M3 x 37P)
- EPD-37A *2

General Purpose Terminal (M3 x 37P)
- DTP-3A *2

Screw Terminal (M2.6 x 37P)
- DTP-4A *2

Signal Monitor / Output Accessory for Digital I/O (32P)
- CM-32(PC)E *2

Connection Conversion Board (96-Pin→37-Pin x 2)
- CCB-96 *3

AC adapter (input : 90 - 264VAC, output : 5VDC 2.0A)
- POA200-20

USB I/O Unit Bracket for X Series
- BRK-USB-X

Support Software

Windows version of digital I/O driver API-DIO(WDM)
[Stored on the bundled CD-ROM driver library API-USBP(WDM)]

It is the library software, which supplies command of hardware produced by our company in the form of standard Win32 API function(DLL). Using programming languages supporting Win32API functions, such as Visual Basic and Visual C++ etc., you can develop high-speed application software with feature of hardware produced by our company. In addition, you can verify the operation of hardware using Diagnostic programs.

OS: Windows Vista, XP, Server 2003, 2000, Me, 98
Adaptation language: Visual Basic, Visual C++, Delphi, C++ Builder

For more details on the supported OS, applicable language and how to download the updated version, please visit the CONTEC’s Web site (http://www.contec.com/apiusbp/).

Data acquisition VI library for LabVIEW VI-DAQ (Available for downloading (free of charge) from the CONTEC web site.)

This is a VI library to use in National Instruments LabVIEW. VI-DAQ is created with a function form similar to that of LabVIEW’s Data Acquisition VI, allowing you to use various devices without complicated settings. See http://www.contec.com/vidaq/ for details and download of VI-DAQ.
Connecting to a Connector

To connect an external device to this product, plug the cable from the device into the interface connector (CN1) of unit shown below.

- **Connector used**
 - PCR-E96LMD+ equivalence to it [mfd. by HONDA TSUSHIN KOGYO CO., LTD.]
- **Compatible connectors**
 - PCR-E96FA+ equivalence to it [mfd. by HONDA TSUSHIN KOGYO CO., LTD.]

* Please refer to page 2 for more information on the supported cable and accessories.

Connecting Input Signals

Connect the input signals to a device which can be current-driven, such as a switch or transistor output device. The connection requires an external power supply to feed currents.

This product inputs the ON/OFF state of the current-driven device as a digital value.

Connector Pin Assignment

Pin Assignments of Interface Connector (CN1)

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Signal name</th>
<th>Meaning</th>
<th>Pin No.</th>
<th>Signal name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>B48</td>
<td>OP 6/7</td>
<td>Common plus pin for +6/+7 output ports</td>
<td>A48</td>
<td>IP 2/3</td>
<td>Common plus pin for +2/+3 output ports</td>
</tr>
<tr>
<td>B47</td>
<td>IP 2/3</td>
<td>+7 port (output)</td>
<td>A47</td>
<td>IP 2/3</td>
<td>+3 port (input)</td>
</tr>
<tr>
<td>B46</td>
<td>IP 2/3</td>
<td>+6 port (output)</td>
<td>A46</td>
<td>IP 2/3</td>
<td>+2 port (input)</td>
</tr>
<tr>
<td>B45</td>
<td>IP 2/3</td>
<td>+5 port (output)</td>
<td>A45</td>
<td>IP 2/3</td>
<td>+1 port (input)</td>
</tr>
<tr>
<td>B44</td>
<td>IP 2/3</td>
<td>+4 port (output)</td>
<td>A44</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B43</td>
<td>IP 2/3</td>
<td>+3 port (output)</td>
<td>A43</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B42</td>
<td>IP 2/3</td>
<td>+2 port (output)</td>
<td>A42</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B41</td>
<td>IP 2/3</td>
<td>+1 port (output)</td>
<td>A41</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B40</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A40</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B39</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A39</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B38</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A38</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B37</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A37</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B36</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A36</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B35</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A35</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B34</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A34</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B33</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A33</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B32</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A32</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B31</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A31</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B30</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A30</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B29</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A29</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B28</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A28</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B27</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A27</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B26</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A26</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B25</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A25</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B24</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A24</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B23</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A23</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B22</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A22</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B21</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A21</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B20</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A20</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B19</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A19</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B18</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A18</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B17</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A17</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B16</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A16</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B15</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A15</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B14</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A14</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B13</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A13</td>
<td>IP 2/3</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B12</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A12</td>
<td>IP 3/4</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B11</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A11</td>
<td>IP 3/4</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B10</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A10</td>
<td>IP 3/4</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B09</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A09</td>
<td>IP 3/4</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B08</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A08</td>
<td>IP 3/4</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B07</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A07</td>
<td>IP 3/4</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B06</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A06</td>
<td>IP 3/4</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B05</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A05</td>
<td>IP 3/4</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B04</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A04</td>
<td>IP 3/4</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B03</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A03</td>
<td>IP 3/4</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B02</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A02</td>
<td>IP 3/4</td>
<td>0 port (input)</td>
</tr>
<tr>
<td>B01</td>
<td>IP 2/3</td>
<td>0 port (output)</td>
<td>A01</td>
<td>IP 3/4</td>
<td>0 port (input)</td>
</tr>
</tbody>
</table>

* I-00 - I-37 can be used as interrupt input signal.
* [] shows pin numbers specified by HONDA TSUSHIN KOGYO CO., LTD.
Input Circuit

The input circuits of interface blocks of this product is illustrated in the image above. The signal inputs are isolated by Optocouplers (compatible with current sink output). This product therefore requires an external power supply to drive the inputs. The power requirement for each input pin is about 5.1mA at 24VDC (about 2.6mA at 12VDC).

Connecting a Switch

When the switch is ON, the corresponding bit contains 1. When the switch is OFF, by contrast, the bit contains 0.

Connecting Output Signals

Connect the output signals to a current-driven controlled device such as a relay or LED. The connection requires an external power supply to feed currents. This product controls turning on/off the current-driven controlled device using a digital value.

Output Circuit

The output circuits of interface blocks of this product is illustrated in the image above. The signal output section is an Optocoupler isolated, open-collector output (current sink type). Driving the output section requires an external power supply.

CAUTION
When the PC is turned on, all output are reset to OFF.

Example of Connection to TTL Level Input

The following example shows a connection between a sink type output (output side) and a sink output support input (input side). Refer to this connection example when you connect such this product to each other.

Connecting the Sink Type Output and Sink Output Support Input
When you use the HUB function (USB Type A connector) included on the DIO-1616LX-USB, this product must be connected with 5VDC power supply (in a self-powered state). Connect with 5VDC power supply by using +5VDC input pin.

To supply power using the bundled power connector (MC1,5/3-ST-3,5, compatible cable: AWG28 - 16), strip the end of the compatible cable, insert it into the power connector, then securely screw it.

When using the optional AC adapter [POA200-20], please connect directly to the input terminals.

⚠️ CAUTION

Connect 5VDC power supply to the main unit. Next, connect the USB cable to the PC. Do not turn it on or off when using. If you remove, USB cable is first and then 5VDC power supply.